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ABSTRACT 

This paper demonstrates the economic benefits of using of day-ahead optimization and 

real-time control to plan and implement charging/discharging schedules for a behind-the-

meter system comprised of PV generation and electric storage in commercial buildings. With 

investment costs falling over the past decade, distributed PV has become an increasingly 

attractive option for commercial buildings seeking to reduce energy costs. However, because 

PV is inherently intermittent, it cannot actively manage time-of-use tariff demand charges or 

respond to real-time prices or demand response signals. Missing out on these economic 

benefits amounts to a significant loss in value for the PV system. By pairing PV with electric 

storage and optimized control, commercial customers can begin to capture these benefits, 

leveraging synergies by storing energy from periods of excess PV generation and discharging 

as needed in other periods. Optimal planning of charging behavior is essential to the controller 

and ensures that complex cost and performance trade-offs are all duly considered and storage 

schedules are cost-minimal. The presence of the controller also reduces customer impact on 

the wider electricity grid, by granting customers a level of control over power flow to and 

from the grid. The potential economic benefits of this system may help PV and storage 

overcome their largest barrier—investment cost—while reducing the impact of wide-spread 

PV adoption for utilities, by creating more flexible, better integrated customer loads and 

generation. This paper shows that optimized control for PV-storage systems increases the 

annual energy cost savings by as much as 25% with significant increases to net-present-value 

for a real California facility under a commercial time-of-use tariff.  

INTRODUCTION 

Over the past decade, capital costs of installed photovoltaic (PV) systems have fallen 

significantly, at an average rate of 5% to 7% per year, from $12 per WDC installed in 1999 to 

an estimated $2 to $4 per WDC in 2014 for systems above 220 kW, according to the U.S. 

Department of Energy SunShot Initiative (Feldman et al 2012). Given the strong downward 

trend on PV investment costs, it is not surprising to find that installation of distributed 

commercial and residential scale PV systems has accelerated dramatically in recent years. 

According to industry reports, over two thirds of distributed PV capacity has been installed 

over the past two and a half years. Industry experts expect this trend to continue, with total 

installed capacity of distributed PV doubling in the next two and a half year (SEIA 2013). 

While higher penetration of renewable generation, such as PV, is widely seen as a positive 

development, it is understood that as installed PV capacity grows, new problems arise. By its 

nature, PV is intermittent and cannot be actively dispatched. While PV generation will 

typically be available during high-demand midday periods, its output can be subject to large 

fluctuations over short time periods. Given the instability that high penetration of distributed 

PV can introduce, additional supporting technologies, in the form of spinning reserves, 



storage on the grid-side, or local, distributed storage behind the meter will be needed to ensure 

that sufficient supply is always available to meet system load. As PV penetration increases, 

the size of this requirement will grow commensurately, creating an additional, external cost 

not included in the capital cost of PV.  

Beyond uncertainty in daytime PV generation, additional problems exist. Even under 

ideal insolation conditions, PV output will taper off in the afternoon as the sun begins to set. 

In many regions, this corresponds with the time when system loads naturally tends to peak, as 

many people return home and begin to engage in energy-intensive activities. These two 

drivers converge to create the potential for conditions where non-PV generators will need to 

ramp up output much more quickly than currently required, to make up for the increasing 

demand and decreasing supply from PV. The threat associated with rapidly transitioning from 

PV to conventional energy sources is so widely understood, it is often referred to colloquially 

as the “duck chart” (Figure 1). Taking this figure as an example, as total generation from PV 

increases over the next 7 years, the average afternoon system ramp rate grows from 

approximately 1.8 GW per hour in 2013 to 4.2 GW per hour. Currently this requirement will 

often be met by dispatching peaking units that can switch on quickly to meet increased 

afternoon demand (high ramp rates, but high operation costs), but with the total system ramp 

rate projected to more than double, simply expanding this approach may become prohibitively 

expensive.  

Figure 1. The “duck chart” illustrates how increasing penetration of PV generation can produce progressively 

higher ramp rate requirements in the afternoon, when total demand increases, but PV generation begins to taper 

off. Source: CAISO 2013 

If these trends persist without solutions to mitigate their impact, the economic 

conditions for additional, grid-friendly PV deployment will become less and less favorable to 

further investment.  From the grid perspective, additional investments will be needed, either 

in the form of high ramp-rate generators or storage buffers to increase the upper-bound for 

grid-friendly PV deployment.  If distributed storage and control of commercial and residential 

scale PV generation can be implemented behind the customer meter, then, along with the 

appropriate customer outreach and controller deployment, the utility can drive more grid-

friendly behavior via simple price signals. Such a solution could contribute to alleviating the 

aforementioned problems while PV penetration is still relatively low and PV-related problems 

are not yet disruptive. 

The Case for PV-Storage Systems 

The economics of a PV-storage system will be different from the perspective of a 

customer. Depending on the amount of PV generation vis-à-vis the customer’s load, the 



details of the customer-utility agreement, and the technology, a number of scenarios emerge.  

Illustrative examples of typical daily load and electricity supply profiles are given for a small 

subset of these scenarios in Figure 2.  

 

 
Figure 2. Illustration of daily load and generation profiles for PV generation scenarios 

a. PV output never exceeds building load – This represents the simplest case. If PV 

generation never exceeds customer load, then it can always be used to directly serve a 

portion of that load. Because the generation is used when available, the customer has no 

levers to affect the economics of the PV generation. For instance, under many TOU 

tariffs, demand charges can make up a substantial portion of total electricity costs. These 

demand charges can be determined for the entire month by periods as small as 15 minutes. 

If PV output begins to taper off during the “on-peak” period of such a tariff, then a large 

portion of potential cost savings will be lost for the billing cycle. By that same logic, the 

customer is also unable to respond to real-time price signals, which also undermines the 

value of PV deployment. 

b. PV output exceeds building load, utility allows for export – As the size of the PV 

system increases, relative to load, export conditions will eventually arise. Under a 

favorable agreement with the utility, the customer will be able to export excess generation 

back to the utility and possibly generate additional revenue under a feed-in tariff or a 

similar agreement. This revenue stream may incentivize customers to install larger PV 

systems than would be economically viable otherwise. As with scenario a, the customer 

cannot actively modulate net load supplied by the utility, and therefore, is not capable of 

managing demand charges. Similarly, the customer does not have any ability or incentive 

to adopt behavior to mitigate the problems caused by the rapid growth of distributed PV 

generation.  

c. PV output exceeds building load, utility restricts export – To counter the problem of 

PV over-generation, utilities may move to less accommodating agreements with 

customers, by limiting or altogether prohibiting the export of excess PV generation back 

to the grid. When approaching this limit, the only lever available to the customer is PV 

curtailment. This curtailment process is inefficient, and may only be possible in discrete 

segments, such that a quarter, half, or even all PV output must be switched off while over-

generation conditions exist.  In addition to the factors outlined in scenarios a and b, this 

creates unfavorable economic conditions, in particular, for relatively large, distributed, 



behind-the-meter PV systems. This approach also does not remove the threat of 

instabilities for utilities, as customers approaching their export limits will need to quickly 

shed PV generation, potentially producing sudden and unpredictable spikes in demand. 

d. PV output exceeds building load, electric storage is present – In the case of the fourth 

scenario, storage in the form of a stationary electric battery is present behind the customer 

meter. Under either the feed-in tariff or non-export agreement, the customer can select to 

store excess PV generation and discharge storage at times when it is most economically 

advantageous to do so. This could be done for demand-charge management under a TOU 

tariff, as shown in Figure 2d, or in response to other real-time price signals. While the 

additional presence of a battery increases total system cost and complexity, if properly 

implemented it will improve overall economic performance of PV systems and potentially 

enable customers to engage in a new revenue stream (e.g. demand response.) 

Paired with storage, customers will have the ability to actively respond dynamically to 

price signals, meaning that utilities can create programs to incentivize particular behaviors 

which help to reduce peak conditions and excessive ramp rates at the system level, improving 

reliability across the grid. In addition to the peak-shaving behavior illustrated in Figure 2d, a 

PV-storage system also provides customers with the potential for improved local reliability. In 

the event of short outages, customers can employ storage to serve all or critical loads, until 

service is restored. Seamless switching between grid-connected and grid-disconnected 

(islanded) modes can be implemented to minimize disruptions during such events. With 

sufficient storage capacity, such a system could act as a microgrid, islanding more frequently, 

in order to maintain maximal reliability and reduce variation in voltage and frequency serving 

critical loads. The local PV-storage system simply needs a supervisory controller to instruct 

local distributed energy resources (DER). The controller would receive price signals and 

information from external sources; use that information to generate load and PV forecasts; 

optimize dispatch instructions, subject to technology constraints; then implement the planned 

schedule on a real-time basis, taking into account deviations from forecasted information. The 

logic for all the aforementioned behaviors could be programmed into this controller to ensure 

that total utility costs remain low, and reliability metrics are all being satisfied.  

Details of the Supervisory Controller 

The economics of a distributed PV-storage system will not be determined solely by the 

price inputs, but also by how quickly the system can adjust to changes in load, generation and 

price signals to ensure charging, discharging and utilization behaviors capture as much 

economic benefit as possible. In other words, a smart and adaptive supervisory control layer is 

essential to the success of such a system. It is just such a controller that researchers at 

Lawrence Berkeley National Lab (LBNL) are currently developing. This controller will 

leverage the pre-existing optimization functionality of DER-CAM (Distributed Energy 

Resource Customer Adoption Model). DER-CAM is a mixed integer linear programming 

model used to inform decision making regarding DER investment and operations (Marnay et 

al. 2013). Developed over the past decade, DER-CAM has been applied to a diverse number 

of research questions, including assessing the potential for combined heat and power (CHP) 

units (Stadler et al. 2009) and thermal energy storage (TES) deployment (DeForest et al. 

2014), day-ahead scheduling of battery storage at the Santa Rita Jail microgrid (Cardoso et al. 

2013), and automated day-ahead scheduling of thermal resources at a University of New 

Mexico campus building (Mammoli et al. 2013).  



 
Figure 3. Diagram of supervisory controller for PV-storage systems 

The original instance of the model, known as Investment & Planning DER-CAM, was 

built to select the optimal portfolio of DER technologies for a given site, based on historic site 

load data (typical one year or more), DER investment costs and technology constraints. As a 

supplement to this, LBNL has also developed Operations DER-CAM to address more detailed 

question of DER-CAM operations and scheduling. Operations DER-CAM uses the 

preexisting DER portfolio of a specific site as an input, as well as forecasts of loads and 

weather conditions, rather than historic data. Operations DER-CAM determines optimal 

dispatch schedules for DER technologies for day-ahead and week-ahead time horizons. 

Operations DER-CAM will be used within the supervisory controller for in-advance planning 

of battery schedules. Details of Operations DER-CAM can be found in (Marnay et al. 2013).  

The supervisory controller can be better understood by exploring the internal modules, 

their functions and their internal and external interactions, as shown schematically in Figure 3. 

This figure is not intended to detail the configuration of the system (e.g. placement of inverter 

relative to storage and other DER), however the supervisory controller is agnostic in this 

regard, and can be  adjusted to site-specific configurations.  

The first is the data exchange module, which simply facilitates communication 

between the supervisory controller, the customer’s controller and other external data sources. 

It translates instructions coming from the real-time dispatch module into set-points, which 

regulate the net electricity purchases, outputs from the PV system, battery and whatever other 

DER is present at the site. It collects real-time status of equipment and load to feed back to the 

controller to update forecasts and improve planning. The data exchange module also collects 

data on weather forecasts and price signals from external sources.  

These data are fed into the planning module of the controller. The planning module is 

where the DER-CAM optimization resides. It uses forecasters based on analysis of historical 

load data, as well as forecasted data for pertinent drivers, such as weather and occupancy 

estimates, to predict total electricity loads and PV output for the next 24 to 48 hours. Using 

these forecasts, details of electricity tariff rates and structure and technical constraints of the 

DER equipment, DER-CAM is able to determine an optimal schedule for battery 

charging/discharging and net electricity purchases. Of course, the use of these day-ahead 



instructions is only optimal so long as the forecasted data and regression model accurately 

represent the next day’s events. This will not always be the case. To account for this, the 

optimized schedule is delivered from the planning module to the real-time control module, 

and serves as a preliminary guide for DER outputs.  

The real-time control module, taking this schedule into account, is equipped with a 

number of heuristics on how to respond when actual load or generation values deviate from 

the forecast. Because DER-CAM optimization run-time prevents the planning module from 

directly instructing the DER, the quick and simplified decision-making of the real-time 

module is essential.  In its completed form, the real-time module will continuously feed 

current status information back to the planning module, which in turn will be producing 

updated “optimal” schedules at hourly (or sub-hourly) intervals to account for changes in load 

and generation conditions.   

Forecaster Details 

The forecaster that supplies the necessary data to the optimization tool employs two 

different methods. Clear sky photovoltaic generation for a given time is calculated using a 

linear regression model that links sun altitude and generated power and slowly adapts over 

time. Specifically, data on the past 30 hours with clear sky and altitude angles larger than zero 

degrees is used to determine the regression coefficients   ̂ and   ̂. Site location is used to 

determine altitude angles (  ) for the following 24 hours. Equation 1 illustrates that expected 

generation E is set to zero if these angles are less than zero. Otherwise, expected power is 

determined based on the regression coefficients and the angles. Additionally, it is multiplied 

by a factor  , which represents seasonal patterns that influence solar radiation as outlined in 

Masters (2004). This factor starts at 1, but is slightly adapted whenever the deviation between 

a predicted and an actual value exceeds a certain threshold. 

 (  )  
 [       ]        

          
 

This learning mechanism can also be found in the load forecaster, although it is built 

around a different method. Since the load exhibits strong recurring patterns for each day of 

the week (with the exception of holidays, which are similar to Sundays), a Fast Fourier 

Transformation (FFT) is used to extract the dominant frequencies composing these patterns. 

For instance, to predict next Tuesday, a FFT of the three past Tuesdays is performed. These 

very stable patterns only vary when the occupancy of the base changes. To compensate this, a 

scaling factor is included in this forecaster, as well. Similar to the factor in the PV forecaster, 

it starts at 1, but is adapted when deviation exceed a threshold(Brandt et al. 2014). 

Site Details 

The development of this supervisory controller is currently ongoing for use at a large 

California facility equipped with 2 MW of PV and stationary storage sized at 1 MWh. 

Electricity demand at the facility reaches its annual peak of 2.56 MW in August. At this point 

in the project, the controller has not yet been deployed at the site, and real operational data on 

performance of the controller has not yet been collected. Real data will be important to assess 

in particular how accurately day and hour ahead forecasts represent real load and insolation 

profiles at the site. Additionally, the effectiveness of the real-time control module, based on 

how well it can respond to such deviations, can only be assess once real operational data has 

been collected. However, the value of such a supervisory controller can be estimated using 

DER-CAM simulation of a typical year of load and PV generation data. The details and 

findings of this simulation are given in subsequent sections.  

 



METHODOLOGY 

To evaluate the economic benefit of a supervisory controller for a PV-storage system, 

the Investment & Planning DER-CAM model is employed. While this is not the version of 

DER-CAM that will be employed in the actual controller, it gives a general, annual 

perspective on operating the PV-storage system based on optimized schedules. This planning 

tool could be applied to optimize the capacities of both PV and storage, however for this 

application those capacities are fixed as inputs. DER-CAM will simply be used to determine 

cost-optimal scheduling of storage under the varying load and weather data of a typical year. 

The model simulates 3 typical load profiles (weekday, weekend, peak day) and typical 

weather data for each month, resulting in 36 total simulated day-types. A storage 

charging/discharging profile is determined for each of these days. The daily electricity 

consumption profiles are then scaled to a monthly value, at which point the electricity rate 

structure is applied, to determine monthly electricity costs. The objective function of the 

optimization is to minimize the annual electricity costs of the site. Other costs, such as 

operations and maintenance costs are not considered in the optimization objective function. 

Capital costs for equipment installation are considered in net present values (NPV) 

calculations, which examine annual costs and savings over the equipment lifetime. NPV 

present in this paper does not include other revenue opportunities such as demand response. 

 To capture the effect of real test-site constraints, PV exports are limited to 1 MW. 

Additionally, when PV curtailment becomes necessary, it must be done in 25% increments, 

which corresponds to disconnecting an entire array. Given the importance of electricity costs 

in the objective function, and given the TOU tariff structure, the optimization will favor 

storage behaviors that minimize PV curtailment and reduce power demand charges. Other 

incentives, such as demand response, can also be characterized and included in the objective 

function. However, this simple example presents only tariff electricity charges and revenue 

from PV export. The tariff applied to this investigation is Pacific Gas and Electric’s Industrial 

E-20 rate (PG&E 2014). The tariff includes demand charges in on-peak and mid-peak periods, 

as well as a non-coincident demand charge which is applied to the maximum monthly 

demand. These demand levels are calculated from the highest 15-minute average consumption 

at any point in a specified period (e.g. on-peak or mid-peak). PV export is paid the current 

TOU energy rate (i.e. net-metering).  

Insolation and temperature profiles are generated from historic typical meteorological 

year (TMY) sources for the site location. These are necessary to determine hourly PV output 

and efficiency. Hourly load profiles are based on a statistical analysis of the test site historic 

meter data over the past few years. In practice, extensive historic data is valuable but not 

critical for building and calibrating load forecasters for the controller.  

Scenarios 

To assess the value of optimization, the results of the DER-CAM optimization are 

compared with a simple scheduling heuristic. The heuristic has no ability to anticipate future 

conditions, and formulates charging instructions based only on current conditions. This 

heuristic is structured to prevent the PV system from being curtailed whenever possible. 

Under the heuristic, storage starts each day at the minimum SOC. It is charged when PV 

generation exceeds both the local load and the 1 MW PV export limit. Under these conditions, 

the charge rate is constrained by the available excess PV generation, the power limits and the 

empty energy capacity of the battery. Under conditions when PV generation is less than local 

load, and useable energy remains in storage, the battery discharges to reduce grid electricity 

purchases. This discharge rate is constrained by the net difference between load and PV 

generation, the amount of usable energy in the battery and the maximum discharge limits. 



These two scheduling methods (DER-CAM optimization and the simple heuristic) are 

applied to a number of different technology scenarios. The base case scenario has no installed 

PV or storage, and is simply the cost of meeting local loads directly with grid electricity. 

Scenarios 1-3 have PV systems sized at 1, 2, and 3 MW respectively and no storage. 

Scenarios 4-6 have similarly sized PV arrays and 1 MWh 0.5 MW of storage. Scenarios 7-9 

again have similarly sized PV arrays and 2 MWh 1 MW of storage. These inputs are 

summarized in Table 1. For scenarios with onsite storage (S4-S9), both simple and optimal 

schedules are generated. 

Additional NPV inputs such as interest rates and capital costs for each DER are 

important to determine the economic viability of any installation, though are not necessary for 

constructing or operating the controller. The capital cost for PV installation is assumed to be 

$3150 per kW with a lifetime of 20 years. Storage costs will also have a significant impact on 

the total system cost. Currently, storage technologies are likely too expensive to realize 

economic benefits in most applications. However, with growing interest in using distributed 

storage for these types of applications, the per kWh price of storage may see a rapid reduction 

similar to that experienced by PV over the past decade. To capture the sensitivity of system 

economics on storage price, three cost scenarios will be explored. The first present prices that 

are comparable to current values $1000 per kWh. The next is an optimistic level of $500 per 

kWh. Finally, a highly optimistic scenario of $200 per kWh, in line with recent California 

Energy Commission research targets (CEC 2014). A lifetime of 20 years (approximately 5000 

cycles) is assumed for each of these scenarios. Finally, an interest rate of 5% is used for 

amortized cost and net present value calculations. Changes in these two parameters could 

have significant impact on the overall economics of the system, but a sensitivity analysis of 

these has not been performed for this analysis.  

RESULTS & DISCUSSION 

 
Figure 4. Example optimized schedules from DER-CAM show results for scenario 3 (no storage) for a typical 

July weekday (a) and March weekday (b) and Scenario 6 (with storage) for July (c) and March (d). Simple 

schedules for these scenarios are not shown. 



For each of the 36 day types simulated, DER-CAM generates a profile of usage for the 

battery and PV, subject to all power balance and export constraints. Examples of these usage 

profiles can be seen in Figure 4, which shows the results for typical July  and March weekday 

for scenario 3 (a, b), which has no installed storage and scenario 6 (c, d), which includes 1 

MWh of storage. The charging/discharging strategy employed by the optimization will vary 

depending on the specific balance between local load and available insolation. As Figure 4a 

indicates, PV generation exceeds both local loads and the export limit, requiring curtailment. 

When optimized storage is introduced (Figure 4c) that excess generation can be sent to 

storage and curtailment can be avoided. During other times, the optimized storage strategy is 

less intuitive. During typical March weekdays (4b, d), PV generation does not exceed the 

export limit. Rather than remaining empty until midday, storage is charged in the morning 

with grid electricity. Storage is discharged on-peak, which allows a greater portion of the PV 

generation to be exported when TOU energy rates are at their highest. 

 
Figure 5. Annual PV capacity factors for onsite use, export and shed PV generation for each scenario (S1-S9). 

S4-S9 are scheduled separately with DER-CAM and the simple heuristic. 

The effectiveness of the optimization can be assessed by a number of metrics. Because 

sub-optimal behavior risks higher incidence of PV curtailment, the overall PV capacity factor 

(i.e. the fraction of the time the full PV output is being used onsite or sold) gives some 

indication. Figure 5 shows the annual fraction of total PV used, sold, and shed by each 

scenario. For scenarios with only 1 MW of PV (1, 4, 7) all generation can be used directly 

onsite. As the PV capacity increased to 2 MW (2, 5, 8) nearly 10% of the PV is exported. This 

is true independent of storage size and scheduling method. At 3 MW of PV (3, 6, 9), 

curtailment becomes necessary. As storage increases the overall fraction curtailed decreases 

from 11% with no storage to 4% with 1 MWh to 2% with 2 MWh. Interesting, there appears 

to be no difference in total curtailment between the optimized and simple scheduling methods. 

The economics of these two methods are however significantly different. Table 1 gives 

a summary of results for each technology, schedule and cost scenario. Examining the annual 

costs savings, the optimized schedule produces savings that are 5% to 25% higher than the 

corresponding simple heuristic case. While these two methods utilize a similar amount of 

onsite PV generation, only the optimization is able to maximize the revenue from PV export, 

while also managing monthly demand charges with strategic discharging of storage.  

Intuitively, as total PV and storage system sizes increase, the total annual savings 

increase. However, the benefits do not necessarily increase commensurately with the overall 

system cost. NPV is a useful metric for determining if an investment is worthwhile by 

examining costs and revenues over the life of the investment. Table 1 presents the NPV for 

each technology scenario and battery-price scenario. The optimization is able to dramatic 

increase NPV vis-à-vis the simple schedule, indicating the importance of optimal DER 

scheduling. In many cases it is able to generate a positive NPV for a technology portfolio 

which produced a negative NPV (loss on investment) when scheduled with the simple 

heuristic. This is especially true as system size and complexity grows (e.g. larger PV and 

storage installations). In absolute terms, optimization increases the value of the system by 

more than one million dollars (scenarios 7-9).  



Table 1. DER capacity inputs and results summary by scenario (S1-S9).   

Scenario 

PV 

size 

[MW] 

Battery 

size 

[MWh] 

Battery 

power 

[MW] 

Total 

annual 

savings 

Annual 

savings 

percent 

Load from 

PV 

PV 

capacity 

factor 

NPV high 

cost 

NPV med 

cost 

NPV low 

cost 

base case 0 0 0 $0 0 0 NA $0 $0 $0 

S1 1 0 0 $296,012 20% 21% 100% $444,000 $444,000 $444,000 

S2 2 0 0 $545,752 33% 38% 100% $316,000 $316,000 $316,000 

S3 3 0 0 $715,620 38% 44% 89% -$807,000 -$807,000 -$807,000 

S4 - optimized 1 1 0.5 $353,734 23% 21% 100% $158,000 $658,000 $958,000 

S4 - simple 1 1 0.5 $303,700 20% 21% 100% -$465,000 $35,000 $335,000 

S5 - optimized 2 1 0.5 $609,761 37% 37% 100% $109,000 $609,000 $909,000 

S5 - simple 2 1 0.5 $558,776 34% 42% 100% -$526,000 -$26,000 $274,000 

S6 - optimized 3 1 0.5 $830,116 42% 43% 96% -$385,000 $115,000 $415,000 

S6 - simple 3 1 0.5 $786,803 40% 60% 96% -$925,000 -$425,000 -$125,000 

S7  - optimized 1 2 1 $380,723 25% 20% 100% -$505,000 $495,000 $1,095,000 

S7 - simple 1 2 1 $303,700 20% 21% 100% -$1,465,000 -$465,000 $135,000 

S8  - optimized 2 2 1 $642,106 40% 38% 100% -$488,000 $512,000 $1,112,000 

S8 - simple 2 2 1 $558,776 34% 42% 100% -$1,526,000 -$526,000 $74,000 

S9 - optimized 3 2 1 $878,871 45% 44% 98% -$777,000 $223,000 $823,000 

S9 - simple 3 2 1 $810,365 42% 61% 98% -$1,631,000 -$631,000 -$31,000 

Annual savings total and percent values are given to the no DER base case. PV capacity factors are given relative to the full output of same sized PV array, and consider both on-

site use and export. Net present value calculations compare annual savings of DER use with amortized capital cost of installation over the assumed 20 year life of the equipment.



In addition to scheduling DER, DER-CAM is capable of selecting an optimal 

technology portfolio. To further assess the DER portfolios specified in each technology 

scenario, the same load, weather, and cost inputs are fed into the model, which is now allowed 

to select installed capacities. While DER-CAM is able to select from a diverse menu of 

technologies, this investigation limits the choices to PV and electric storage. Storage 

investment is constrained to discrete increments of 500 kWh. A summary of these results are 

given in Table 2. Note that the NPV of each of these cost scenarios are higher than any NPV 

for the same cost scenario in Table 1. In each case, the overall increase in NPV is small 

relative to the total, meaning that much of the benefit of optimization can be realized through 

controlling the DER scheduling without optimization of the portfolio. As storage costs drop, 

investment in both storage and PV increase.  

 

Table 2. Optimal PV-storage capacity and NPV as generated by DER-CAM 

scenario PV size [MW] Battery size [MWh] NPV 

high cost 0.69 0 $468,436  

med. cost 1.04 1 $661,667  

low cost 2.43 5 $1,300,604  

CONCLUSIONS 

From a review of recent studies, it is clear that the growth in distributed PV generation 

is positioned to accelerate rapidly over the next 5 to 10 years. This rapid increase in 

generation from an intermittent, schedule-independent source can create new issues or 

exacerbate existing problems faced by utilities and system operators, without supplemental 

technologies, either on the utility-side or behind the customer meter. Researchers at LBNL 

assert that the solution to this problem of distributed generation is distributed storage and 

control. Through the development of a supervisory controller, powered by the optimization 

tool DER-CAM, deployed at a real California facility, these researchers intend to demonstrate 

the economic benefits, both to customer and utility, of such a solution. This controller will 

contain planning and optimization capabilities to respond to a number of price signals, 

including tariffs and demand response events, and is subject to local technical and reliability 

constraints. The controller will also have functionality allowing it to communicate 

instructions to a site’s DER in real-time, accounting for deviations from planned schedules. 

To demonstrate the potential value of such a controller, a number of technology 

scenarios have been run through the annual investment & planning version of DER-CAM. 

The annual costs of these optimized schedules are compared to schedules determined by a 

simple heuristic. While the overall utilization of PV is comparable between the simple and 

optimized cases, the optimized schedules achieve consistently lower costs by managing 

demand charges and maximizing revenue from PV export. Over the assumed lifetime of the 

equipment, the net present value is significantly increased, in some cases by as much as 

$1,000,000. While the current high price of storage has a limiting effect on the economic 

viability of behind-the-meter PV-storage systems, optimized scheduling is able to produce 

systems with positive NPV, given other assumptions for system lifetime and interest rate. As 

the costs for electric storage fall, the economics for further deployment will improve, as 

evidenced by the medium and low cost scenario results.  
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